前言
第1章机器学习概述1
1.1机器学习的概念与基本术语1
1.2人工智能、机器学习、深度学习三者的关系6
1.3机器学习的三个基本要素11
1.4机器学习模型的分类16
1.5数据预处理24
1.6模型选择与评估29
1.7小结43
1.8习题43
第2章回归模型45
2.1线性回归45
2.2多项式回归53
2.3线性回归的正则化——岭回归和套索回归54
2.4逻辑斯谛回归58
2.5 Softmax回归61
2.6小结63
2.7习题64
第3章 k-最近邻和k-d树算法66
3.1 k-最近邻法66
3.2 k-d树70
3.3小结75
3.4习题76
第4章 支持向量机77
4.1统计学习理论基础77
4.2支持向量机的基本原理和特点84
4.3线性SVM90
4.4基于核函数的非线性SVM95
4.5多分类SVM96
4.6支持向量机的训练100
4.7小结104
4.8习题105
第5章 贝叶斯分类器与贝叶斯网络106
5.1贝叶斯方法106
5.2贝叶斯分类器113
5.3贝叶斯网络119
5.4小结128
5.5习题129
第6章 决策树130
6.1概述130
6.2决策树学习134
6.3特征(或属性)选择135
6.4 ID3算法144
6.5 C4.5算法145
6.6CART算法146
6.7决策树的剪枝149
6.8决策树的优缺点150
6.9小结151
6.10习题151
第7章 集成学习153
7.1集成学习概述153
7.2 AdaBoost算法159
7.3梯度提升决策树(GBDT)160
7.4随机森林和极端随机树163
7.5小结166
7.6习题168
第8章 聚类169
8.1聚类概述169
8.2 k-均值算法175
8.3 BIRCH算法178
8.4基于密度的聚类算法183
8.5小结190
8.6习题191
第9章 深度学习192
9.1人工神经网络基础192
9.2卷积神经网络207
9.3循环神经网络218
9.4生成式对抗网络226
9.5小结238
9.6习题239
附录 缩略语英汉对照240
参考文献242
展开